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Collision” Approximation
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France
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Abstract. Most studies of collisions in turbulent flows are based on the “ghost collision”
approximation, whereby one follows a number of particles, and simply counts the number of
times the distance between two particles becomes less than the sum of their radii; particles are
kept in the flow after they collided. We discuss here the limitations of this approximation, and
demonstrate, using a simple model flow, that it leads to overestimates of the real collision rate
by as much as ∼ 30% at small Stokes numbers.

1. Introduction

Coagulation processes in turbulent suspensions play a crucial role in many phenomena, both in
industrial and natural contexts. To quantitatively understand the time scales involved in these
processes, one needs to estimate the collision rates between particles. Most estimates of collision
rates in turbulent flows are based on the so-called “ghost collision” approximation, whereby one
simulates the dynamics of a set of particles in a turbulent flow, and simply counts the number of
times the particles come within a given distance, equal to the sum of their radii. As explained by
Gustavsson et al. (2008), this potentially leads to biases in the estimates of the collision rates,
induced by the finite time correlation of the velocity of the flow.

We study here the problem of determining collision rates in turbulent flows. To this end
we use a simplified flow model, known as “kinematic simulations”. We determine in such a
flow the collision rates, both using the “ghost particle” approximation, and in a more realistic
configuration whereby one systematically removes colliding particle pairs once they have collided.
The dependence of the results as a function of the parameters of the problem is determined.

1.1. The Saffman–Turner Theory and “Ghost Collisions”
Saffman & Turner (1956) argued that for small particles which follow the streamlines of the flow
(i.e. St→ 0) the collision rate is given by

N = −n0

∫
dΩ vr(2a,Ω, t)Θ(−vr(2a,Ω, t)). (1)

This integral makes use of the Heaviside step function Θ(x) to sum up all regions on a sphere
of two times the particle radius a where the the radial velocity vr is directed inwards. The
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underlying idea is to follow particles as they move in the flow. Then the above integral multiplied
by the particle density n0 in the surrounding fluid will give the rate at which other particles come
in contact with the particle at the system’s origin. Averaging the above expression (1) and taking
into account that for very small particles the radial relative velocity vr can be approximated by
the strain, which is assumed to be persistent and hyperbolic, Saffman & Turner (1956) finally
arrive at their famous result

N = n2
0

2 (2a)3
(8πε

15ν

)1/2
= n2

0
2 1.294(2a)3

τη︸ ︷︷ ︸
ΓST

, (2)

where we introduced the Saffman–Turner collision kernel ΓST. The remaining undefined quantities
are the rate of turbulent energy dissipation ε, the kinematic viscosity ν and the Kolmogorov
time τη.

In the special limit case of persistent hyperbolic strain that Saffman & Turner (1956) investigate,
there is no reason to take into consideration what happens after two particles have collided. In
such a system the particles would just separate and never come close again. This leads to the
method, consisting in counting collisions, while keeping colliding particles in the flow, known in
the literature as “ghost collisions”. This method enables a simple collision treatment in numerical
simulations (e.g. in Wang et al., 2000; Zhou et al., 2001; Bec et al., 2005; Franklin et al., 2005;
Bec et al., 2010). In a turbulent flow, however, the strain will not stay constant along the
trajectory of a particle (Brunk et al., 1998) and it may be elliptic in some regions (Chong et al.,
1990). Thus two particles can get close to each other, separate and come close again. If in such a
case the distance falls two times below the particle diameter 2a, two collisions would be counted
within the framework of “ghost collisions”. These re-collisions augment the collision rate in an
unphysical way.

In the present paper we propose to study the effect of “ghost collisions” in detail and we will
be especially interested in the error they impose on the estimates of the collision kernel Γ. To
this end we define an alternative method to deal with colliding particles, which shall be described
in more detail in Section 3. But before coming to this we will give an overview of the numerical
methods used.

2. Numerical Methods

Maxey & Riley (1983) have derived a system of equations that describes the motion of small
spheres in a turbulent flow. For heavy particles, i.e. particles with a mass density ρp much
larger than the density of the surrounding fluid ρf , whose diameter is much smaller than the
Kolmogorov length scale η, these equations take the simplified form

dx

dt = v,
dv

dt = u(x, t)− v

τp
+ g. (3)

Here x and v denote the particle’s position and velocity respectively, u(x, t) is the fluid
velocity at point x and g represents the gravitational acceleration. The particle response
time τp = 2a2ρp/9νρf describes the particle’s inertia induced by the Stokes drag. Comparing
it to the Kolmogorov time τη, i.e. the fastest time scale of the surrounding fluid flow, gives the
relevant dimensionless parameter, the Stokes number St = τp/τη.

We are interested in collisions induced by the turbulent motion of the fluid and for the
present purpose, we set g to zero. Equations (3) are integrated using an ordinary second order
Runge–Kutta scheme. This integration demands the knowledge of the fluid velocity at each
particle’s position and the usual way to provide it, would be to perform a direct numerical
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simulation of the Eulerian velocity field u(x, t). This however is numerically very expensive and
it is especially difficult to obtain higher Reynolds numbers. Therefore we opt for a simple model
flow introduced by Fung et al. (1992) as “kinematic simulations”.

2.1. Kinematic Simulations
Our kinematic simulations follow closely those described by Ducasse & Pumir (2009). The
Eulerian velocity field is given by a superposition of Nk randomly chosen Fourier modes

u(x, t) =
Nk∑
n=1

an cos(kn · x + ωnt) + bn sin(kn · x + ωnt), (4)

which fulfills certain additional conditions. First the wave vectors kn = knk̂n are chosen pointing
in random directions k̂n with their amplitudes kn distributed according to

kn = k1

(
L

η

)(n−1)/(Nk−1)
, k1 = 2π

L
, kNk

= 2π
η
, (5)

where L signifies the large (integral) length scale and η the small (Kolmogorov) one. The
coefficient vectors an and bn are also chosen randomly but perpendicular to the wave vectors
thus ensuring incompressibility

an · kn = bn · kn = 0. (6)

Furthermore a Kolmogorov spectrum is imposed on the flow by defining the amplitudes of the
coefficient vectors as a2

n = b2n = E(kn)∆kn with E(kn) = E0k
−5/3
n (E0 = 1 in our simulations).

The discrete differences between the wave vectors ∆kn are defined as

∆kn =


(k2 − k1)/2, n = 1
(kn+1 − kn−1)/2, n ∈ [2, Nk − 1]
(kNk

− kNk−1)/2, n = Nk.

(7)

We kept L/η = 64 in all our simulations and chose Nk = 109. It has been shown by Malik &
Vassilicos (1999) that for Nk & 100 one obtains good agreement between kinematic simulations
and DNS.

Finally, a further parameter, λ, shows up in the definition of the frequencies ωn, which are
chosen to be proportional to the eddy turnover time on each length scale,

ωn = λ
√
k3
nE(kn). (8)

It has been shown by Malik & Vassilicos (1999); Nicolleau & ElMaihy (2004) and others, that a
value of λ = 0.5 is consistent with known Lagrangian properties of the flow. This has been used
in the simulations discussed here.

2.2. Particle dynamics
A total of N particles are confined to a periodic box of side length αL and the volume fraction
occupied by those particles, Φ = 4Nπa3/3(αL)3, is kept constant in all our simulations. It has
to be small to make sure that the approximations leading to Equations (3) are valid and that
collisions involving three and more particles may be neglected. We took Φ = 1.2× 10−4 in all
our simulations. The parameter α ∈ N adapts the box size allowing to have more particles in
one simulation while keeping the volume fraction Φ constant.
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3. Collision Detection

To detect particle collisions we perform a neighborhood search—similar to the method described
by Sundaram & Collins (1996)—at each time step. For every particle pair within a small distance
of one another the trajectories between the current and the precedent time step are interpolated
by a cubic polynomial and it is checked if the distance between the particles’ centers falls below
2a anywhere along these trajectories. If this is the case a collision is counted and the two
particles get marked for an eventual post-collision processing. We used two different schemes for
post-collision treatment: Either

(i) the particles were kept in the flow and allowed to (re-)collide right at the next time step—this
is the “ghost collision” approach and statistics derived using this method will be denoted by
the index “gh” in the following—or

(ii) one of the two particles is replaced by another one coming from a “particle bath”. This
“particle bath” consists of a sufficiently large number of particles, which are not accounted
for during collision detection. But they are advected in the flow just like usual particles
and therefore already “thermalized” at the time when they replace a colliding particle. For
numerical reasons the replaced particle is added to the reservoir and will be allowed to
replace itself another colliding particle at a much later time (usually several large eddy
turnover times). Statistics obtained within this frame will be denoted by the index “re”.

We performed simulations for different Stokes numbers in the range 0.125 ≤ St ≤ 5. For each
Stokes number ten runs, each with a different set of randomly chosen Fourier modes, were started.
It is especially crucial in the case of kinematic simulations to investigate independent realizations,
as for those the properties of the flow are strongly dependent on a small set of (frozen) random
wavenumber modes (comp. Sec. 2.1). The total integration time was chosen such that a total of
O(106) collisions per Stokes number could be provided.

The relevant factor when comparing these two approaches will be the collision kernel Γ.
Averaged over time it can be expressed as

〈Γ〉T = 1
T

∫ T

0

2N (t)
n2

0
dt = 2V Nc([0, T ])

TN2
p

, (9)

where we introduced Nc([0, T ]), the number of collisions in the time interval [0, T ]. Further
averaging is performed over different realizations of each simulation. An estimate of the error
can be obtained from the fluctuations. We shall now drop the angular brackets again and denote
by Γ the collision rate averaged over time and realizations.

4. Numerical Results: The “Ghost Particle” Overestimates the Collision Rates

The numerically evaluated collision kernel for different Stokes numbers St and both post-collision
treatments (see Sec. 3) is shown in Figure 1. For small Stokes numbers the “ghost particle”
collision kernel tends to the value ΓST (see Eq. (2)) as predicted by Saffman & Turner (1956).
The proper collision kernel, obtained by replacing colliding particles, however, falls below this
value. In fact the “ghost collision” approach overestimates the collision kernel for all Stokes
numbers. This result is especially prominent in Figure 2, where we show the relative error of the
“ghost” collision kernel, (Γgh − Γre)/Γre. This error falls with growing Stokes number but reaches
up to ∼ 30 % for small values of the Stokes number.

The diminishing of the error made by using the “ghost collision” approach can be understood,
when one takes into consideration the growing importance of the “sling effect” (Falkovich et al.,
2002; Falkovich & Pumir, 2007; Ducasse & Pumir, 2009) or “caustics” (Wilkinson et al., 2006).
These describe collision events, where the two colliding particles have velocities very different
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Figure 1. The numerically estimated colli-
sion kernel using “ghost collisions” (squares)
and the replacement particle approach (cir-
cles) for different Stokes numbers. The ghost
collision method overestimates the collision
kernel for all Stokes numbers but both esti-
mates approach for larger Stokes numbers.
Furthermore the dashed line segment shows
the collision kernel theoretically predicted
by Saffman & Turner (1956) and clearly Γgh
tends to this value for St→ 0.
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Figure 2. The error in estimating the
collision rate using the “ghost collision”
approximation. The difference between the
collision rate estimated with the “ghost col-
lision” approximation Γgh and by replacing
colliding particles Γre divided by Γre, as a
function of the Stokes number St. The er-
ror decreases when St increases, due to the
increased importance of the “sling effect”.

from the surrounding fluid. Thus such two particles will veer away from each other quickly
and are unlikely to re-collide afterward. Therefore, when collisions resulting from this kind of
phenomenon prevail, the unphysical re-collisions accounted for by the “ghost collision” approach
are of minor importance.

To verify our hypothesis, that collisions resulting from the “Sling effect” are lesser affected
by the “ghost collision” approach, we calculated the average collision kernel conditioned on the
relative velocity of the two particles at the moment of their collision 〈Γ|v`〉. The relative collision
velocity v` can be determined from the particles’ positions, ri, and velocities, vi, i = 1, 2, via
v` = (v2 − v1) · (r2 − r1)/|r2 − r1| and the conditionally averaged collision kernel fulfills∫

〈Γ|v`〉 dv` = Γ. (10)

This measure describes the contribution from each interval dv` to the overall collision kernel Γ.
In Figure 3 we show the conditionally averaged collision kernel for the “ghost collision” approach,
〈Γgh|v`〉, and for our “particle bath” approach, 〈Γre|v`〉 in the case of St = 0.5. Furthermore the
difference between those two, 〈Γgh−Γre|v`〉 , is shown. The bulk of this difference is concentrated
at small relative velocities v` and it vanishes at intermediate values, where the contribution to
the collision kernel, as given by the conditionally averaged collision kernels 〈Γgh|v`〉 and 〈Γre|v`〉,
is still significant. Thus the overestimation of the “ghost collision” approach results mainly from
collisions with small relative velocities; collisions with large relative velocities don’t contribute to
this error. This is in accordance with our hypothesis.
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Figure 3. The conditionally averaged col-
lision kernels for the two different schemes,
〈Γre|v`〉 (solid) and 〈Γgh|v`〉 (dashed), as well
as their difference (dash-dotted) for St = 0.5.
Vertical lines describe the median-type
values v̄` defined as

∫ v̄`
−∞〈Γ|v`〉dv` = Γ/2.

Clearly the error made using the “ghost
collision” approach results mainly from colli-
sions with small relative velocities. The inset
shows the tails of the conditionally averaged
collision kernels 〈Γre|v`〉 and 〈Γgh|v`〉. For
large values of v` the difference between the
two collision schemes vanishes.

5. Conclusion

We have demonstrated that the widely used “ghost collision” approach overestimates the collision
kernel by up to ∼ 30 %. This deviation diminishes with growing Stokes number and we argue
that this is due to the growing importance of “Sling collisions”. This argument is supported by
our investigation of the average collision kernels conditioned on the relative velocity. Nevertheless
it may be worthwhile to confirm these results, using techniques along the lines of Ducasse &
Pumir (2009). These would allow to decide between ordinary and “Sling” collisions. Thus it
would be possible to directly measure which of these two types of collision is more affected by
using the “ghost collision” approach.

As pointed out in the introduction (Sec. 1.1) there are two reasons why “ghost collisions”
lead to incorrect estimates of the collision rate: the existence of regions of elliptic strain and its
non-persistence. Both are true as well for frozen turbulent flows. In fact, Zhou et al. (1998), who
use a frozen field, do also find a difference in the collision kernels obtained using “ghost collisions”
on the one hand and using another post-collision treatment, similar to our “particle bath,” on
the other hand. Especially with respect to the non-persistent strain, it may be interesting to
investigate the influence of the time-dependence of the flow in more detail.

Finally the challenging task of extending the Saffman & Turner (1956) approach to properly
take into account the unwanted “ghost collisions” remains to be addressed.
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