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Turbulence facilitates collisions between particles suspended in a turbulent flow.
Two effects have been proposed that can enhance the collision rate at high turbulence
intensities: ‘preferential concentration’ (a clustering phenomenon) and the ‘sling effect’
(arising from the formation of caustic folds in the phase space of the suspended
particles). We have determined numerically the collision rate of small heavy particles
as a function of their size and densities. The dependence on particle densities allows
us to quantify the contribution of the sling effect to the collision rate. Our results
demonstrate that the sling effect provides the dominant mechanism to the enhancement
of the collision rate of particles, when inertia becomes significant.
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1. Introduction
Understanding the rate of collisions between small particles, suspended in a

turbulent fluid, is necessary for describing a variety of important physical processes.
In the case of clouds, collisions between droplets may determine the onset of rainfall
(Shaw 2003). Models for planet formation involve aggregation through collisions
of dust grains in the circumstellar disc (Safranov 1969). Also, collisions between
suspended particles may be an important contribution to dissipation of energy in some
particle-laden flows (Elghobashi 1994). It is, therefore, of considerable importance to
quantify collisions between particles suspended in a turbulent gas.

This topic has a long history (recently reviewed by Grabowski & Wang 2013),
starting from the seminal work by Saffman & Turner (1956), who were interested in
understanding rain initiation in turbulent clouds. Important theoretical insights have
emerged in recent years, which indicate that their results lead to an underprediction
of the collision rate in highly turbulent flows. Saffman & Turner remarked that,
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because of the inertia of the suspended particles, there is a differential acceleration
between the fluid and the particles. Two mechanisms whereby this inertial effect
can influence the collision rate have been identified. First, inertia is responsible for
a strong clustering of particles, an effect termed ‘preferential concentration’, which
is ascribed to (heavy) particles being expelled from vortices by a centrifugal effect
(Maxey 1987) (other interpretations are considered by Wilkinson et al. (2007)). This
clustering effect enhances the local concentration, hence the collision rate. Secondly,
owing to inertia, the relative velocity between two particles can be enhanced. It has
been realised recently that this mechanism may lead to particles being arbitrarily
close, and yet having very different velocities. This induces collisions that may be
thought as resulting from particles being ‘slung’ by vortices (Falkovich, Fouxon &
Stepanov 2002). This phenomenon can also be understood in terms of caustics in the
phase space of the suspended particles (Wilkinson & Mehlig 2005; Wilkinson, Mehlig
& Bezuglyy 2006), and has recently been demonstrated experimentally (Bewley, Saw
& Bodenschatz 2013). When the turbulence is sufficiently intense, a gas-kinetic model
can be used to describe the trajectories (Abrahamson 1975), sometimes referred to
as ‘random uncorrelated motion’ (IJzermans, Meneguz & Reeks 2010; Meneguz &
Reeks 2011).

These mechanisms for enhancement of the collision rate have been illustrated
by simulations on model flows (Ducasse & Pumir 2009; Meneguz & Reeks
2011). There have been investigations of the collision rates in simulations of fully
developed turbulence, which have provided quantitative information on preferential
concentration and on the increase of the collision velocity (Sundaram & Collins
1997; Wang, Wexler & Zhou 2000; Rosa et al. 2013). There have also been detailed
theoretical investigations of the collision rate: a particularly effective description of
the collision-rate enhancement in terms of a stochastic model for the probability
distribution function (p.d.f.) of pairs of particles has been proposed by Zaichik,
Simonin & Alipchenkov (2003). These approaches do not make any attempt at
separating the contributions from the two different mechanisms of collision-rate
enhancement. In this paper we report direct numerical simulation (DNS) studies of
the collision rate of particles in fully developed three-dimensional turbulence, as a
function of both their size and density. This extended parameter space allows us to
separate the clustering and the caustics/sling effect. We find that the caustics/sling
effect plays a significant role in the mechanism leading to the enhanced collision rate
in turbulent flows when the response time of the particle exceeds the Kolmogorov
time scale of the flow (St > 1, with the definition (2.3) below).

2. Models for the collision rate
In this section we discuss the clustering and sling/caustics models for the

collision rate, before considering how these compare with our numerical results.
We consider a monodisperse suspension of spherical particles, of radius a, made of
material with density ρp, suspended in an incompressible fluid of density ρf and
kinematic viscosity ν. The fluid, with velocity field u(r, t), is in a statistically steady
state of turbulent motion with rate of dissipation per unit mass equal to ε. We
consider a sufficiently dilute suspension, so the flow is not significantly perturbed by
the presence of the particles. We assume that the particles obey the simple equation
of motion (Gatignol 1983; Maxey & Riley 1983)

ṙ = v, v̇= 1
τp
[u(r, t)− v], (2.1a,b)
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where

τp = 2
9

a2

ν

ρp

ρf
(2.2)

is the particle relaxation time, determined from Stokes formula for the drag on a
moving sphere. This equation of motion is valid in the limit where the suspended
particles are very small and very dense: ρp/ρf � 1.

In determining the motion of particles by using (2.1), only one parameter is needed,
namely the relaxation time τp. To compare this time scale to a time scale of the flow,
we introduce the Stokes number, as the ratio between τp and the characteristic time
of the flow at the smallest scale, the Kolmogorov time scale τK ≡ (ν/ε)1/2:

St= τp

τK
. (2.3)

The Stokes number parametrises the effect of particle inertia. For St � 1, particles
are advected by the fluid, and collisions are the result of shear. When St � 1, the
inertia of the particles allows them to move relative to the surrounding fluid. Note
that St ∝ √ε, so that the inertial effects become more important when the turbulent
intensity increases. In the range of droplet size relevant in the cloud microphysics
context, 10 µm . a . 60 µm, the Stokes number varies in the range 0.01 6 St 6 2
(Grabowski & Wang 2013). In other applications, such as planet formation, very large
Stokes numbers are relevant (Wilkinson, Mehlig & Uski 2008). Gravitational settling
is important for cloud microphysics (Grabowski & Vaillancourt 1999), but not for
planet formation.

We count a collision as occurring when the separation of the centres of
independently moving particles come within 2a. The collision rate R, defined as
the probability per unit time for a given particle to collide with any of the other
particles, is proportional to the volume density of the other particles, n0, to the
cross-sectional area (∝a2) and to the appropriate average of the relative velocity for
colliding particles (Wang et al. 2000) denoted by 〈|w|〉:

R= 2πn0(2a)2〈|w|〉, (2.4)

where w is defined as w= δv · δr/|δr|, δr being the distance between the centres of
the colliding particles, and δv the difference between the velocities of the centres of
the particles. The expected total number of collisions in a closed system of volume
V is simply obtained by multiplying R by n0V/2. We note that our definition of the
collision rate differs slightly from the one used elsewhere, and generally denoted
by Γ (see e.g. Sundaram & Collins 1997). The quantity R used here is simply
related to Γ , defined among others in Sundaram & Collins (1997), by R= n0Γ . We
neglected the role of gravity, and of hydrodynamic interactions, which may inhibit
collisions by trapping a lubricating layer between the particles. We are concerned
here with the collision rate for this slightly simplified model. The objective is to
describe the collision rate determined from our DNS studies within the framework of
a parametrisation based upon recent theoretical insights.

In the limit St � 1 the collision rate is determined by shearing motion, so that
〈|w|〉 ∼ 2a/τK . Saffman & Turner (1956) argued that

RST =
√

8π

15
n0(2a)3

τK
. (2.5)
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Their calculation includes all instances in which the separation radius decreases
past 2a. In the case of collisions where particles stick or coalesce on contact, we
should only count the first contact collisions. This effect should be accounted for
by introducing a factor f < 1 in (2.5). These corrections, which are investigated in
a separate publication (Voßkuhle et al. 2013), are not discussed in this article. We
simply set f = 1 here.

The enhancement of the collision rate, compared to the prediction of (2.5), is
expected to come from the particle trajectories breaking away from the fluid as
the Stokes number increases. The effect termed ‘preferential concentration’ causes
clustering of particles with finite values of St. The density of particles at a distance
r from a given test particle is n0g(r), where g(r) is a radial correlation function.
The expulsion of heavy particles from vorticity-dominated regions induces only
minor differences of the relative velocity difference (Chun et al. 2005; Gibert, Xu
& Bodenschatz 2012). As a result, the collision rate due to particles being advected
into contact by shearing motion is

Radv =
√

8π

15
n0(2a)3

τK
g(2a). (2.6)

At a fixed Stokes number, the function g(r) has a power-law dependence upon
r: g(r) ∝ r−ζ (Reade & Collins 2000). This reflects the expectation that the
suspended particles should sample a fractal measure (Sommerer & Ott 1993; Bec
2003). The exponent is ζ = d − D2, where d is the spatial dimension and D2 the
correlation dimension (Grassberger & Procaccia 1983). DNS results indicate that, for
three-dimensional turbulent flows, 2.3 6 D2 6 3 (Bec et al. 2007).

In the limiting case where the turbulence intensity is very high, an alternative
approach to understanding the effect of increasing the turbulence intensity was
initiated by Abrahamson (1975), who pointed out that a gas-kinetic approach can
be used to model the motion of the suspended particles. In this limit the relative
velocity due to shearing motion induced by turbulence, which is of the order of
a/τK (Saffman & Turner 1956), is replaced by a much larger relative velocity that
characterises the relative motion of the fluid at different positions. This relative
velocity may be parametrised by writing 〈|w|〉 ∼ uKF(St, Re), where uK = (εν)1/4 is
the velocity at the Kolmogorov scale, and F depends on the Stokes number, St, and
the Reynolds number, Re. The collision rate is, therefore,

Rsling = n0a2η

τK
F(St, Re), (2.7)

where η = (ν3/ε)1/4 is the Kolmogorov length. The collision rate is the sum of
contributions from collisions between particles that lie on the same branch of the
phase-space manifold, giving rise to Radv, and collisions between particles on different
branches, giving rise to Rsling:

R= Radv + Rsling. (2.8)

This decomposition, proposed in earlier works (Wilkinson et al. 2006; Ducasse &
Pumir 2009; Gustavsson & Mehlig 2011), rests on the assumption that the fraction
of particles that give rise to preferential concentration collide with a small relative
velocity with respect to the fluid, whereas another fraction, evenly distributed in
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the fluid, moves with large relative velocity. The collisions due to these particles
are described by the term Rsling, with the analytic form in (2.7). When St→ 0, the
collision rate is well approximated by (2.5), but both terms in (2.8) can contribute to
an enhanced collision rate as St increases. The principal question addressed by this
paper is to determine which contribution dominates as St increases. While an explicit
determination of the quantities entering (2.8) is difficult (Ducasse & Pumir 2009), we
study here the collision rate R by varying, at fixed values of Reλ and St, the size of the
particles. In view of (2.2) and (2.3), it amounts to varying the density ratio (ρp/ρf ).

It is possible to consider the asymptotic forms for the function F(St, Re) in
(2.7), in the limits of small and large Stokes numbers. In the limit as St→ 0, we
must have F(St, Re) → 0, so that the limiting case (2.5) is recovered from (2.8).
Considerations of model systems (described by Wilkinson et al. (2006)) suggest that
F has non-analytic behaviour in this limit, such as F(St, Re)∼ exp(−C/St), for some
constant C: this is consistent with numerical results with the Navier–Stokes equations
(Falkovich & Pumir 2007). The asymptotic form of the function F(St, Re) at large
Stokes numbers has been considered by several authors. Abrahamson’s theory is not
valid for fully developed turbulence, because it ignores the multiscale structure of
the flow. A version that correctly accounts for the multiscale structure of turbulence
was proposed by Völk et al. (1980), using the Kolmogorov model for the structure
of the flow. This theory suggests that F(St,∞)∼ St1/2. A simpler and more general
dimensional argument was proposed by Mehlig, Uski & Wilkinson (2007): in the
inertial range, the relative velocity can depend only upon ε and τp, so that dimensional
analysis mandates that 〈|w|〉 ∼ √ετp. Substituting for τp, we have a rate of collision
at high Stokes number that is of the form (2.7) with F(St,∞) ∼ K

√
St, where K

is a universal dimensionless constant. We emphasise that, because the preferential
concentration effect is a consequence of nearby particles experiencing a correlated
strain rate, this effect makes no contribution to Rsling. Equation (2.7) accounts for
collisions between particles that have not experienced the same local environment,
and the factor g(2a) that occurs in (2.6) is therefore absent from (2.7).

An alternative approach to the theoretical analysis of collision rates was pursued
by Zaichik et al. (2003), who analysed the p.d.f. of relative position and velocity
in a stochastic model for the turbulent velocity field. This model includes both
preferential concentration and the sling/caustic effects, but does not allow their relative
contributions to be determined. The possible connections between that approach and
the one discussed in this paper deserves further attention (Salazar & Collins 2012).

3. DNS studies of the collision rate
As explained before, we investigated the collision rate R as a function of both a

and ρp/ρf . This allows us, in particular, to keep the values of Reλ and St fixed, while
varying the size of the particles.

Our simulations used a pseudo-spectral code, fully dealiased, with grid size 3843.
The flow is forced with a prescribed energy injection rate ε (Lamorgese, Caughey
& Pope 2005). The Taylor microscale Reynolds number achieved in the steady state
is Reλ = 130. Proper spatial resolution has been maintained, as can be judged from
the product kmaxη = 2, where kmax is the largest wavenumber faithfully simulated.
Particle trajectories were integrated by using the velocity Verlet algorithm (Press
et al. 2007) and resorting to tricubic interpolation to evaluate the fluid velocity at the
position of the particle. We detected collisions by using the algorithm described by
Sundaram & Collins (1996). Modifying the ratio ρp/ρf at fixed value of the Stokes
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FIGURE 1. (Colour online) The collision rate R as a function of the Stokes number
St and for the ratios of density ρp/ρf = 250, 103 and 4 × 103. The collision rate R is
normalised by (a) n0(2a)3/τK and (b) n0(2a)2η/τK . The horizontal dashed line in panel (a)
corresponds to the Saffman–Turner prediction. The legend in (b) applies also to (a).

number is achieved by varying in the collision detection algorithm the radius of the
particles, a, according to (2.2) and (2.3) (so that a ∝ (ρp/ρf )

−1/2). In the range of
parameters considered, ρp/ρf > 250 and St 6 5, the particle radii are at most ≈ η/3,
which ensures that (2.1) provides a very good description of the motion. We find
that after a transient state of approximately five eddy turnover times, the collision
rate becomes independent of time. The collision rates were determined by recording
at the minimum 1.3 × 104 collisions when ρp/ρf = 103, accumulated (except in one
case) over &10 eddy turnover times. For the values of St and ρp/ρf considered here,
the particle size a is very small, so the Reynolds number of the particle is negligible,
and other corrections to (2.1) can be neglected (Daitche & Tél 2011).

The collision rate, R, determined numerically is plotted in figure 1. As explained
earlier, we do not distinguish here between single and multiple collisions. In
figure 1(a), R is normalised by n0(2a)3/τK and plotted as a function of St. The
Saffman–Turner prediction, equation (2.5), implies that, in the limit St → 0, the
quantity RτK/(n0(2a)3) should become independent of the ratio ρp/ρf . Our own
numerical results are only consistent with this prediction for small values of St.
Figure 1(b) shows that RτK/(n0a2η) as a function of the Stokes number does not
depend much on ρp/ρf for values of St larger than &0.3. This scaling is consistent
with the sling/caustics collision mechanism, described by (2.7). We note that F(St,Re)
deduced from figure 1(b) does not fit the asymptotic form F(St,∞)=K

√
St for large

values of St. We ascribe this to the limited Reynolds number of our numerical
simulations.

A clear illustration of the transition from the regime described by the Saffman–
Turner prediction, (2.5), to the sling-dominated regime, (2.7), is provided by figure 2,
which shows the ratio between the values of R computed at ρp/ρf = 4000 and 1000
(crosses) and ρp/ρf = 1000 and 250 (triangles). Whereas (2.5) predicts that, in the
absence of any preferential concentration (g = 1), these ratios should be 1/8, (2.7)
rather leads to the expectation of a ratio equal to 1/4 (recall that a∝ (ρp/ρf )

−1/2). The
ratio Radv(4ρp/ρf )/Radv(ρp/ρf ) is equal to (1/2)3−ζ , where ζ characterises the scaling
of g as a function of scale. Figure 2 shows that the ratios are extremely close to 1/4
for St & 0.75, but approach 1/8 for St . 0.3. At values of St . 0.3, the comparison
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FIGURE 2. (Colour online) The ratio between the two collision rates R corresponding to
ρp/ρf = 4000 and 1000 (crosses) and ρp/ρf = 1000 and 250 (triangles), illustrating the
crossover between the sling-dominated regime for St & 0.5, and the regime described by
the Saffman–Turner theory for St . 0.3. For the sake of comparison, the continuous line
shows the quantity (1/2)3−ζ , which represents the increase of the collision rate Radv due
only to the effect of preferential concentration.

of the ratio between the values of R and the values of Radv indicates that preferential
concentration is the prevailing mechanism leading to the enhancement of the collision
rate. In the intermediate range 0.5 . St . 1, the growing difference between the two
ratios of R and Radv points to a transition towards a regime dominated by the sling
effect.

Figure 3 shows the function g(2a) (which quantifies the importance of preferential
concentration) in our simulations for the three different values of ρp/ρf . Figure 3
shows that the strong enhancement of the concentration in the vicinity of a particle
is not sufficient to make the advective collision rate (2.6) comparable to the sling
collision rate, (2.7), as soon as the value of St is larger than &1. This conclusion
is consistent with the results shown in figure 2.

The observation concerning the ratios between the collision rates at values of
4ρp/ρf and ρp/ρf shown in figure 2 implies that, provided St & 0.75, the sling effect
becomes very significant. This conclusion is corroborated by figure 4, which shows
the value of Radv/R for the values of ρp/ρf chosen here as a function of St. For the
value of ρp/ρf = 1000, relevant to cloud microphysics, the effect due to preferential
concentration provides ∼51 % of the total collision rate at St= 0.75. This contribution
drops to ∼40 % at St= 1, and becomes even less significant at higher values of ρp/ρf .
The decrease in the relative contribution of the preferential concentration when ρp/ρf
increases, clearly seen when St & 0.75 in figure 4, is directly related to the difference
between the curves showing R(4ρp/ρf )/R(ρp/ρf ) and the curve showing (1/2)3−ζ .
This difference implies that the relative contribution due to preferential concentration
becomes very small when the ratio ρp/ρf increases, that is, when the particle size
diminishes. Thus, in the limit ρp/ρf → ∞, the sling effect is expected to be the
prevailing effect. In the physically very relevant case of water droplets in air, where
the ratio ρp/ρf is large but finite, (ρp/ρf = 1000), the preferential concentration effect
still plays a significant role. Figure 2 shows that the contribution of the preferential
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FIGURE 3. (Colour online) The function g that measures preferential concentration,
computed for three values of a, corresponding to particles with a density ρp equal to
250ρf , 1000ρf and 4000ρf , as indicated. The preferential concentration does not play a
significant role for St & 5.
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FIGURE 4. (Colour online) The ratio of the contribution to the collision rate due to
preferential concentration Radv , defined by (2.6), and of the total collision rate, R. At
fixed value of ρp/ρf , the contribution of Radv to the total collision rate decreases when
the Stokes number increases, or when the ratio ρp/ρf increases.

concentration at St≈ 0.75 is ∼51 %, and drops to 16 % at St= 2. These values would
drop to 43 % and 10 % at ρp/ρf = 4000.

Further evidence for the importance of caustics comes from considering the
probability density, P(w|2a), of the radial relative velocity between two particles, w≡
δv · δr/|δr|, conditioned on the fact that the two particles collide (|δr|= 2a and w6 0).
The quantity P(w|2a) was determined from our simulations by first determining
the distribution of velocity Pcoll(w) (for w 6 0). As the number of particle pairs
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FIGURE 5. (Colour online) The cumulative distribution of radial velocities of colliding
particles, C(|w|) (continuous line), and the cumulative distribution weighted by |w|,
CΦ(|w|) (dashed-dotted line), defined by (3.2). These describe, for the two Stokes numbers
shown here, (a) St = 0.3 and (b) St = 0.75, the contribution to the collision rate due to
particle pairs colliding with relative velocity less than |w|. While particles with a velocity
larger than uK are very few, they are responsible for a sizeable fraction of the collision
rate. The data shown correspond to ρp/ρf = 1000. The ratio uKτK/(2a)≈ 13.5 at St= 0.3,
panel (a), and ≈ 8.6 at St= 0.75, panel (b).

participating in a collision with a relative velocity w is proportional to the distribution
of pairs, P(w|2a), multiplied by |w| (Wang et al. 2000), we deduced that P(w|2a)∝
Pcoll(w)/|w|. Figure 5 shows the cumulative p.d.f., C(|w|), and the contribution of
particles of velocity w′ < |w| to the flux (Sundaram & Collins 1997), CΦ(|w|):

C(|w|) =
∫ |w|

0
P(w′|2a) dw′, (3.1)

CΦ(|w|) =

∫ |w|
0

P(w′|2a)w′ dw′∫ ∞
0

P(w′|2a)w′ dw′
. (3.2)

For the value of the Stokes number St = 0.3, at which figure 2 indicates that
preferential concentration plays a very significant role in the collision rate, we find
that particles with a relative velocity less than that of 99 % of all colliding particles
have a relative velocity |w|6 2(2a)/τK , and contribute to .85 % of the total collision
rate. On the other hand, at St = 0.75, for which figure 2 suggests a much more
significant contribution of the sling effect, we find that approximately 99 % of all
colliding particle pairs have a velocity .7(2a)/τK . These colliding particles however
contribute only ∼72 % of the total collision rate. In other words, 1 % of all pairs
of particles have a very large relative velocity, of the order of the velocity uK , but
contribute to a significant fraction, of the order of 30 %, of the total collision rate. At
yet higher values of St, the fraction of colliding particle pairs with relative velocities
larger than uK increases, and provides an ever larger contribution to the collision rate.
The qualitative consistency between the results shown in figure 4 (obtained by using
(2.6) and (2.8)), and those obtained by identifying the particle pairs colliding with
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a large relative velocity, provides an independent justification of our approach, and
suggests a possible alternative definition of the collision rate Rsling.

4. Discussion
An alternative decomposition of the collision rate, originally proposed by

Sundaram & Collins (1997), expresses the collision rate R as a product in which the
term g(2a), which describes the local concentration enhancement around a particle,
appears as an overall factor:

R= 2π(2a)2g(2a)〈|w|〉eff . (4.1)

This representation, which is exact for a suitable definition of 〈|w|〉eff , suggests that
the preferential concentration and sling effects act together to enhance the collision
rate. Numerical work (Sundaram & Collins 1996; Bec et al. 2010; Rosa et al.
2013) has provided detailed information on the two unknown terms in (4.1). While
modelling work has provided an effective description of g and 〈|w|〉 (Zaichik et al.
2003), the results presented in this work indicate that, although logically consistent,
the product representation (4.1) is not the most physically transparent approach. In
particular, figure 1(b) demonstrates that, if this parametrisation of the collision rate is
used, then the dependence of g(2a) upon ρp/ρf shown in figure 3 must be cancelled
(for St > 0.5) by a reciprocal dependence of the collision velocity, 〈|w|〉eff . In fact,
previous measurements (Bec et al. 2010; Rosa et al. 2013) of the dependence of
g(r) and of the average velocity difference as a function of r suggest power-law
dependences, the exponents being such that the product g(2a)〈|w|〉eff is essentially
constant for St& 0.5. Equations (2.6), (2.7) and (2.8) give a physically well-motivated
theory, which explains the data, and provide an explanation for this cancellation. We
remark that the power-law dependence of the collision velocity found in Gustavsson
& Mehlig (2011, 2014), namely 〈|w|〉eff ∝ (2a)3−D2 , effectively explains the observation
that the product g(2a)〈|w|〉eff is independent of (2a), thus justifying (2.8) for that
system.

We conclude that, in turbulent flows and at values of ρp/ρf ≈ 1000 (the case
relevant to typical aerosols), the sling effect provides at least 50 % of the collision-rate
enhancement for St≈ 1, and prevails at higher values of the Stokes number, for St& 2.
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